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Abstract

While transferring data using TCP/IP, even though total data
transfer rate is same, microscopic behavior of data transmis-
sion is quite different by network interfaces of end nodes.
Inappropriate data transmission rate causes needless packet
losses which result in bad perforamance, and worse, it also
causes needless loads for intermediate routers. This problem
will become more serious as bandwidth becomes wider. This
paper explains the problem and describes our approaches.

1 Introduction

It is well known that TCP/IP data transfer on LFN (Long
Fat pipe Network) is difficult. The transfer rate is about
windowsize/RTT , hence, LFN demands large window size.
On the other hand, window size grows by ACK which returns
after RTT interval, thus, growing speed of window size on
LFN is slow, proportional toRTT . First window size con-
trol of current TCP is that window size is multiplicatively in-
creased during slow start, and then “Additive Increase and
Multiplicative Decrease (AIMD)” during congestion avoid-
ance. For stationary state of single stream during conges-
tion avoidance, a line graph of AIMD (throughput over time)
forms saw-tooth shape, whose upper and lower bend-point is
available bandwidth and1/2 of available bandwidth respec-
tively. If AIMD works ideally in sufficiently long period,3/4
of available bandwidth should be utilized on the average. A
lot of studies have been done for appropriate window size
control, such as Fast TCP [15], Scalable TCP [14], and High-
Speed TCP [13], and some theoretical studies have been done
for analysis of AIMD [5, 6].

TxQ 100 packets 25000 packets
Min Max Middle Min Max Middle

GbE 9.07 120.0 11.6 9.52 78.0 44.6
FE 25.6 25.7 25.6 88.6 88.7 88.7

Figure 1: GbE vs. FE on LFN, RTT 200 msec, bottleneck
OC-12

But the low performance of LFN is not only induced by
window size control. Long distance streams fail to grow their
window size although network not seems to be congested and
there exist sufficient time. Total utilization of network band-
width is far from3/4. In addition, by changing network in-
terface from Gigabit Ethernet (GbE) to Fast Ethernet (FE),
performance can improve remarkably [20].

Table 1 shows the comparison of GbE and FE of data trans-
fer between Maryland and Tokyo where bottleneck is OC-
12 and RTT is 200 msec. We take data 11 times for GbE.
The performance of GbE is very unstable. Sometimes, it at-
tains over 100 Mbps, but, in many cases, FE shows better
performance. This disperseness is critical because, in most
cases, the slowest stream is the dominant factor of total per-
formance.

Since the only difference is speed ofinterface, let us con-
sider about speed more. We callwindow size/RTT “flow-
level rate” which is decided in transport layer. This flow-
level rate is too macroscopic when we consider data transfer
on LFN with high speed interface such as Gigabit Ethernet
(GbE). 1500-bytes packets can be transmitted every 12.5µs
by GbE interface. We call this microscopic rate as “packet-
level rate”.

Let X denotes macroscopic flow-level rate andY packet-
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Figure 2: Transfer Rate is fixedX = window size/RTT ,
which Window Size Control Algorithm might expect

RTT
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Figure 3: Real Transfer Rate change with microscopic view.
Rate is fixedY for ∆t = X × RTT/Y of everyRTT

level rate of the network interface. While transferring data,
roughly speaking, the packet is sent via interface for only first
∆t = X × RTT/Y of everyRTT , which we call “busy
∆t”, then nextRTT −∆t time, that interface is idle. Hence,
network needs buffer of sizeZ = (Y −X)×∆t. This peaky
behavior for busy∆t easily causes needless shortage of buffer
memories of intermediate routers which results in needless
packet losses. Note that busy∆t is long when RTT is long,
and buffer sizeZ needs to be large when transmission rate
Y is large andRTT is long. This problem becomes more
serious when 10 Gbps interface is available for high-end PCs.

Fig.2 shows the ideal transfer rate which might be expected
by window control algorithms. On the other hand, real trans-
fer rate with microscopic view is like Fig.3. This pattern is
formed mainly in Slow Start Phase, where 2 packets are sent
just after one ACK is received repeatedly.

In this paper, our target is to approximate Fig.3 to Fig.2
with small overhead. This prevents the intermediate routers
be overloaded, decreases packet drop and achieves high per-
formance. For this purpose, we take 3 approaches.

IPG tuning Expanding busy∆t by enlarging space between
Ethernet frames. Fig. 4 shows the expected IPG tun-
ing result; lowering the packet-level rate. Bandwidth
changes intoY F/(F + IPG) whereF is the size of
ethernet frame, (mostly,MTU ) and IPG is the size
of space between ethernet frame, and busy∆t becomes
∆t(F + IPG)/F .

RTT

FY/F+IPG

Figure 4: Packet Spacing by setting IPG

RTT

Figure 5: Clustered packet Spacing, First 3RTTs of Slow
Start Phase

Clustered Packet SpacingTo split busy ∆t into small
pieces, putting an appropriate transmission interval be-
tween packets during slow start in TCP stack using ker-
nel timer. When an ACK returns, sender sends one
packet immediately, but wait sending another packet for
half of expected interval of ACK arrivals until the preci-
sion of kernel timer permits. After that, normal TCP
congestion control takes over. If we can control the
transmission interval up to 1 ms, the size of splitted burst
of data is limited to under 80 packets in case of GbE us-
ing 1,500-byte frames. Fig. 5 shows first 4RTTs to
reclamate the basin between busy∆t s.

TCP-aware NIC Directly realize Fig.2 using hardware sup-
port. NIC is informed bothRTT andwindow size and
dynamically fix its Ethernet frame interaval.

IPG tuning and Clustered Packet Spacing is independent
or rather supplements each other, since IPG tuning lowers the
peak but busy∆t still remains until(F + IPG)/F = Y/X.
On the other hand, Clustered Packet Spacing works as divid-
ing “RTT − ∆t” of idle time. Both IPG tuning and Clus-
tered Packet Spacing is controlling idle and busy time of the
interface statistically. These are software solution and ex-
periments are proceeded between Tokyo, Japan and Mary-
land, U.S., 7200 miles distance with bottle neck OC12/POS.
We useiperf command on DELL PowerEdge 1650 (Dual
Pentium-III 1.4 GHz, 1 GB memory, on-board NIC with In-
tel 82554 chip) with Linux 2.4.22 and 2.6.0-test5 with NIC
driver e1000 version 5.1.13, without TCP Segmentation Of-
fload functionality. GbE and FE are configured by Extreme
Summit5i switch.

TCP-aware NIC is, in some sense, our final goal, which
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Figure 6: Inter Packet Gap

Figure 7: IPG (8-1023 bytes) graph

proceeds the tuning dynamically; i.e., it changes its packet
intervals as window size andRTT changes. We show its
basic design and simulation result.

2 Inter Packet Gap tuning

Inter Packet Gap (IPG) is a gap which is placed between Eth-
ernet frames to make transmitter be idle (Fig. 6). Its value
should be more than 12 bytes (by IEEE 802.3), but default
IPG of ethernet driver e1000 is settled to 8 bytes. By modify-
ing e1000 ethernet driver and use original functoin of Ether-
net card, we enabled to set IPG from 8 bytes to 1023 bytes in
increments of 1 byte, i.e. 8 ns. Note that for IPG tuning, we
don’t need any interrupt, so, system overhead is zero.

Figure 7 is the graph of average, standard deviation, maxi-
mum and minimum transfer rate for IPG from 8 to 1023 with
64 bytes steps. This graph shows the tendency that when
IPG is small, the transfer rate is very different, and as the
IPG becomes larger, transfer rate becomes more stable. And,
surprisingly, when IPG is smaller than 320 bytes, the worst
transfer rate is always less than half of Fast Ethernet in 8
times trial. This may mean, currently, buffer of intermedi-
ate routers are not enough to absorb the bursty behavior of
Gigabit Ethernet.

It’s true that IPG tuning is effective to make bursty behav-
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Figure 8: Throughput of on-disk file transfer with 8B IPG

ior of GbE milder, i.e., busy∆t becomes(IPG+F )/F times
longer. But, suppose IPG is set to the maximum value, 1023
bytes and packet-level rateY is 1 Gbps,FY/(IPG + F )
is about 600 Mbps, which is faster than flow-level rateX
in most cases. This means, there still exist busy∆t and
RTT − ∆t idle time of transmitter.

Fig. 8 and 9 shows the throughput of on-disk file transfer
with 8-byte and 1023-byte IPG respectively. Extending IPG
stabilizes the network behavior and the throughput sustains at
the transfer rate of a disk, 453 Mbps on average. Meanwhile,
the file transfer with miminum IPG suffers from packet losses
and the throughput never exceeds 100 Mbps and 53 Mbps on
average.

Fig. 10 – 15 shows the throughput of file transfer with
1023-byte IPG. Each node makes 4 streams, each of which
corresponds with one HDD. Fig. 10, 11 shows how 4 nodes
share OC-48. Fig. 12, 13, 14, 15 shows how 2 nodes share
GbE. Nodes on OC-48 attain about 465 Mbps and nodes on
GbE attain from 130 Mbps to 200 Mbps.

But the shortcoming of IPG tuning is that it affectes all
communication over LFN-tuned interface.

3 Clustered Packet Spacing

To realize packet spacing by software, we modify the packet
transmission scheduling during the slow start to disperse one
window of packets over one RTT. Since TCP congestion con-
trol is ACK-arrival event-driven and has “self-clocking” na-
ture but the network can’t help pacing for high bandwidth-
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Figure 9: Throughput of on-disk file transfer with 1023B IPG
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Figure 10: Throughput of file transfer with 1023B IPG. 4
nodes share first OC-48. Each node makes 4 streams
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Figure 11: Throughput of file transfer with 1023B IPG. 4
nodes share second OC-48. Each node makes 4 streams
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Figure 12: Throughput of file transfer with 1023B IPG. 2
nodes share first GbE for APAN. Each node makes 4 streams
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Figure 13: Throughput of file transfer with 1023B IPG. 2
nodes share second GbE for APAN. Each node makes 4
streams
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Figure 14: Throughput of file transfer with 1023B IPG. 2
nodes share third GbE for APAN. Each node makes 4 streams
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Figure 15: Throughput of file transfer with 1023B IPG. 2
nodes share GbE for APAN. Each node makes 4 streams
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Figure 16: Packet number for first 20 RTTs, RTT 200 msec,
first 4 sec

delay-product flows, it’s important to distribute packets over
one RTT until cwnd grows to appropriate size. After that, the
normal congestion control algorithm takes over and these iso-
lated packets are growing into small bursts, which have more
chance to be handled without loss in routers, and become one
large window as a whole. We can avoid the overhead of deep
fine-grained spacing and benefit from the efficiency of the
burstiness.

We implement this method using kernel timer in Linux
kernel. First, we compute the desired transmission inter-
val cwndn+1/RTT every RTT wherecwndn+1 is the tar-
get cwnd during next RTT. Since cwnd is doubled every RTT
during slow start, if the initial cwnd is 2 and RTT is 200 ms,
then the target interval is 100 ms, 50 ms, 25 ms, and so on.

Figure 16 and Figure 17 show the graph of packet number,
which is sent or recieved packets per millisecond, without
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Figure 17: Packet number with Clustered packet spacing
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Figure 18: Throughput without Packet Spacing
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Figure 19: Throughput with Clustered packet spacing

and with Clustered Packet Spacing, where positive number
shows the number of sending packets and negative number
shows number of received ACKs for every millisecond of first
2 seconds. The former presents ordinary slow start phass and
the latter presents modified slow start phase, where packet is
distributed for first 1 sec, and after that, number of packets
grows. Figure 18 and Figure 19 show the best throughput for
the continuous 5 times trial of “without” and “with” modi-
fication. Without modification 65.4 Mbps was the best, and
with modification 123 Mbps.

4 Combination of IPG tuning and
Clustered Packet Spacing

We combine IPG tuning and Clustered Packet Spacing. IPG
tuning is fine-grain work such as 1µsec, (8 nsec per unit up
to 1023× 8 nsec, and currently we use 256 units), and this
is done by MAC layer, and IPG tuning works as the scrape
of the peak of the mountain. On the other hand, modifica-
tion of Slow Start Phase is rather coarse grain work such as
1 msec, and this modification works as the reclamation of the
valley. In addition, both method have very little overhead to
the system.

Figure 20 shows the best throughput data which we got by
5 times trial. Total throughput is 208 Mbps.

To control transmission rate for multiple streams simulta-
neously, we conduct packet spacing during slow start phase
in TCP stack as follows,
(1) WhileRTT/cwnd > T , send packets withRTT/cwnd
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Figure 20: Throughput with IPG 256 bytes with Slow Start
Phase Modification

interval
(2) If RTT/cwnd < T , normal TCP congestion control takes
over.
whereT is the thresold interval; this is currently the precision
of kernel timer, i.e. 10 msec if Linux 2.4 and 1 msec if Linux
2.6.

(1) is the phase of interval control which settles the seed of
cluster, and, in (2), i.e., ordinary TCP procedure, each cluster
grows individually by each ACKs. The overhead is almost
negligible for interval control lasts at most 10 times since the
maximum RTT on the earth is about 500 msec of satelite com-
munication.
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Figure 21: Number of packets for millisecond with Clusterd
Packet Spacing, (precision 1 ms, Linux 2.6)

Figure 21 shows the state just after interval control phase
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finishes. The effect of Clustered Packet Spacing is that busy
∆t is divided intoRTT/T pieces and placed everyT inter-
val instead ofRTT . Then, the load of intermediate buffer is
almost same as the data transfer rate when we consider the
interval whose granurality is longer thanT precision. But
since there existRTT/T peaks, it easily suffers the effects of
packet loss when window size grows too large.

5 Network Interface Card

5.1 Overview

Since IPG tuning is proceeded in Link layer, it effects all
its connections. IPG tuning is very effective for the system
whose main purpose is point to point data transfer between
fixed places, for example, a scientific project shares huge
amount of observed data between observatory and universi-
ties. But IPG tuning is not appropriate for a server, which
serves huge amount of data to many clients of variousRTTs
at a time. On the other hand, Clustered Packet Spacing is
proceeded in transport layer, which inserts packet space with
the assumption that it is possible to estimate the appropriate
interval between packets in slow start phase. This assumption
is not always true by the network condition. In addition, once
the spacing becomes not even by several packet losses, there
is no way to recover in Congestion Avoidance Phase. For
we dare not to put spacing in Congestion Avoidance Phase to
avoid expected overheads. The problems of both IPG tuning
and Clustered Packet Spacing are that it uses only informa-
tion of its layer. Here, let us recall packet interval; Gigabit
Ethernet is about 12.5µseconds, and 10Gbit Ethernet is about
1.3 µ seconds for each ethernet frame. It is almost impossi-
ble to adjust this spacing all the time using main CPU with
negligible overhead. Hence, we design TCP-aware ethernet
network interface card. The main purpose of this TCP-aware
NIC is to recognize each stream and get information of its
window size andRTT , then, merge these streams into series
of packets whose packet interval is appropriately adjusted and
no stavation occurs. Figure 22 shows the example of two TCP
streams are merged into a sequence of ethernet packets.

5.2 Architecture

Figure 23 shows main functional blocks. XLINX PCI Core
issues PCI transaction via PCI Interface. When a packet
comes, we find its connection ID by using CAM. The ad-
dress of SRAM can be calculated from the ID. Packets from
host are put into Send Buffer and from network are put into

MERGE

Packet of Fast Stream

Packet of Slow Stream

IPG

Fast Stream

Slow Stream

Merged Stream

time

Figure 22: Merge Multi Stream Packets

Host Network

PCI Interface

XLINX PCI Core

Send Packet Scheduler
(IPG Control)

SD-RAM1
(Send Buffer)

SD-RAM2
(Receive Buffer)CAM

(Connection Lookup)

SRAM
(Connection Database)

PM3387
(MAC)

Connection Manager

Receive Manager

Figure 23: Overview of Our NIC Architecture

Receive Buffer. The data stored in Send Buffer will be sched-
uled to be sent by Send Packet Scheduler. The scheduled data
is transmitted to network via MAC (PM3387) Received data
will be passed to host via PCI blocks by Receive Manager.

The send packet procedure on our NIC is as follows:
(1)A packet comes from host via PCI.
(2)Put it into the Send Buffer.
(3)Connection Manager accesses CAM and find a connection
ID.
(4)Calculate a SRAM address.
(5)Update pointers in the SRAM.
(6)Wait until scheduled.
(7)Send to network via PM3387 (MAC).
(8)Get a new IPG value from SRAM.
(9)Set the value to the IPG Counter in Send Packet Scheduler.
We apply the linked list structure to the Send Buffer, be-
cause normal FIFO buffer can’t be applied, since the buffer
size which will be requested by each stream is difficult to
be expected. A pointer is added to the head of each packet
data. This points next packet of same stream. The head
and tail packets of each stream’s linked list are pointed from
SRAM. When streami is scheduled, the packet pointed by
head pointer from SRAM will be transmitted next. After the
transmission, the area of the packet will become NULL state
and ignored. When a new packet comes, it is simply put into
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Figure 24: Structure of 32 bit IPG Counter

the next of latest packet like a ring buffer and pointers are
updated. If Send Buffer has enough size, the reuse of NULL
state area doesn’t need to be considered until the pointer to a
latest packet comes back after 1 round. Because, the maxi-
mum IPG time of our NIC is about 536 ms, all packets send
at least in 1 second. SRAM has the following information of
each connection.
(1) RTT
(2) IPG value
(3) pointer to the head of the stream in the Send Buffer
(4) pointer to the tail of the stream in the Send Buffer
The correspondence between each stream and its SRAM ad-
dress is searched by Connection Manager. It looks up the
CAM by using unique stream information and find quickly
the connection ID. After that the SRAM address will be cal-
culated from the ID. The Packet Send Scheduler consists of
IPG Counters and Comparators. A 32 bit IPG counter is as-
signed to each stream. The counter consists of 4 parts as Fig-
ure 24

When a packet transmission finished, a new IPG value is
set to the Remaining IPG part. If the Remaining IPG part is
n, it means8×n byte spacing. In other word, the Remaining
IPG is reduced by 1 every 64 ns. The Remaining IPG part has
23 bit width. This means the maximum IPG value is over 500
ms. While connection is active, Active Bit is always fixed to
1. When Remaining IPG part is 0 and transmission data exist
in Send Buffer, then Ready Bit becomes 1. If connection isn’t
active, then Ready Bit must be 0. If two or more streams are
ready to send, one of them is chosen and the Wait Counters
of lose streams are increased. The bit 8 to 0 of the counter
is connected to a comparator. The Comparators used by the
Packet Send Scheduler have 9 bit× 2 input ports. It com-
pares two 9 bit values and returns bigger one. By using the
combination of IPG Counters and Comparators, the packets
buffered in Send Buffer will be merged as we wish.

Packet exchanges between host OS and NIC are via PCI
bus with DMA. When a DMA transfer finished, then inter-
ruption will be occurred and Host OS can notice the comple-
tion. To access SRAM we need to access to CAM. To access
CAM we need to know source IP address, source port num-
ber, destination IP address and destination port number.

6 Simulation

We made two types of simulations. One is a performance
simulation on single stream. We measure throughput and
standard deviations under various conditions. The other is
two stream simulation. Fast stream and slow stream send
data concurrently, and we confirm our Packet Send Scheduler
works correctly.

6.1 Simulation Environment

The simulation is done on SunFire 15000. It has 72× 900
MHz UltraSPARCIII processors and 288 GB Memory. OS
is Solaris8 and compilers are ”cc” of Sun WorkShop 6 and
”vhdlan” of Synopsys. The compiler options of ”cc” are ”-
xarch=v9 -xO4”. Our simulator can simulate the arbitrary
structure of networks. Each host’s bandwidth can be changed
freely up to 1G bps. The bandwidth and latency of each net-
work can also be changed. The maximum bandwidth of net-
works is 1G bps and no limitation to latency.

We think networks as large buffers and packet drops are
determined in the networks. The buffer size of a network is
product of bandwidth× latency. Basic packet loss rate in our
simulator is 1

100000
.

When burst communication is done, packet loss rate is in-
flated. To detect the burstiness, we introduce ”BurstCount”.
When a packet comes, its size is added to BurstCount. And
BurstCount is decreased to half every 1 ms. The actual packet
loss rate is calculated as follows:

P =

(
1 +

BurstCount
Buffer Size

)
×

1

100000

RED (Random Early Detection) is also applied. The RED
threshold changes with latency. When the latency is under 3
ms, it is 0.99 and when latency is over 55 ms, it is 0.50. The
measured data between Tokyo and Baltimore is referenced to
determine these simulation parameters. The simulator is writ-
ten in C and VHDL. As the interface between C and VHDL,
we use VHPI (VHDL Programming Interface).
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Figure 25: Network Configuration on Single Stream Simula-
tion

6.2 Single Stream Simulation

The bandwidth of hosts are 1Gbps or 100Mbps in the
simulation. There are two types of IPG configurations. One
is theDynamic IPG Mode. In this mode, each host changes
their IPG dynamically. Another is theFixed IPG Mode.
In this mode, IPG is fixed regardless its window size and
latency. The IPGs tested in the Fixed Mode simulation is as
follows:
8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4196, 8192, 16384
bytes
In the 100M bps mode, IPG is fixed to 8 byte, because
communications on 100M bps is originally not bursty. In our
simulation, following latencies1 are tested.
2 ms, 10 ns, 25 ns, 50 ns, 100 ns, 150 ns

Fundamentally, the bandwidth of networks are set to
1Gbps. But, each configuration has a bottleneck line with-
out 2ms latency case. The bandwidth of the bottleneck line is
600M bps. The detail configuration is shown in Figure 25.

In each combination of host and network, 300MB data
transmission is performed. We measure their throughput and
standard deviations. Simulation is performed 10 times for
each parameter. Figure 26 shows the throughput of Gigabit
Ethernet and Fast Ethernet. Both of them use default IPG (8
byte). In Figure 26, x-axis means 1-way latency and y-axis
means throughput.

Note that Fast Ethernet is faster than Gigabit Ethernet when
latency is over 100 ms[20]. Figure 27 shows the normal-
ized standard deviation of Gigabit Ethernet and Fast Ethernet.
Both of them use default IPG (8 byte). In Figure 27, x-axis
means 1-way latency and y-axis means normalized standard
deviation.

11-way latency

01002003004005006007008009001000

2 10 25 50 100 150Latency (ms)
Throughput (ms) 1G 100M

Figure 26: Throughput of Gigabit and Fast Ethernet

00.1
0.20.3
0.40.5
0.6

2 10 25 50 100 150Latency (ms)
Normalized Standa
rd Deviation 1G100M

Figure 27: Normalized Standard Deviation of Gigabit and
Fast Ethernet
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Figure 28: Throughput of Gigabit Ethernet on Various IPG
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Figure 29: Normalized Standard Deviation on Various IPG

Fast Ethernet is more stable than Gigabit Ethernet in all
cases. Figure 28 shows the throughput of Fixed IPG mode.
In figure 28, x-axis means IPG and y-axis means throughput.

The IPG which achieves peak performance tends to be
large as the network delay becomes longer. However, too big
IPG cause serious performance degradation like 16384 byte
IPG. Figure 29 shows the normalized standard deviations of
Fixed IPG mode. In figure 29, x-axis means IPG and y-axis
means normalized standard deviation.

The normalized standard deviation tends to be large in long
latency and it becomes small when IPG size is enough large.
The throughput of Dynamic IPG and Default IPG transmis-
sions are shown in Figure 30. In Figure 30, x-axis means
1-way latency and y-axis means throughput.

In all cases, Dynamic IPG mode achieve higher perfor-
mance than Default IPG mode. Figure 31, compares the
throughput of Dynamic IPG and the best case of Fixed IPG.

01002003004005006007008009001000

2 10 25 50 100 150Latency (ms)
Throughput (Mbps
) Dynamic IPG8 byte

Figure 30: Throughput Comparison between Dynamic IPG
and Default IPG

01002003004005006007008009001000

2 10 25 50 100 150Latency (ms)
Throughput (Mbps
) Dynamic IPGBest Fixed IPG

Figure 31: Throughput Comparison between Dynamic IPG
and Best Fixed IPG

In Figure 31, x-axis means 1-way latency and y-axis means
throughput.

When latency is over 25 ms, Dynamic IPG mode achieves
higher performance than the best case of Fixed IPG mode.
When latency is small, the best case of Fixed IPG mode is
slightly better. The normalized standard deviations of Dy-
namic IPG and Default IPG transmissions are shown in Fig-
ure 32.

In all cases, Dynamic IPG mode are more stable than De-
fault IPG. Figure 33, compares the normalized standard devi-
ation of Dynamic IPG and the fixed IPG which achieves best
throughput. In Figure 33, x-axis means 1-way latency and
y-axis means normalized standard deviation.

The normalized standard deviations of fixed IPG which
achieve best throughput, are always lager than Dynamic IPG
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Figure 32: Normalized Standard Deviation of Dynamic IPG
and Default IPG
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Figure 33: Normalized Standard Deviation of Dynamic IPG
and Best Fixed IPG
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Figure 34: Network Configuration on Two Stream Simulation
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Figure 35: Data Transmission of Two Stream

mode.

6.3 Two Stream Simulation

To check scheduling ability of Packet Send Scheduler, we
simulate the two stream transmission. Stream 0 has 30 ns
latency and Stream 1 has 2 ns latency. They shares part of
their path as shown in Figure 34. All of networks in this sim-
ulation have 1G bps bandwidth.

Stream 0 sends 200 MB of data and Stream 1 sends 300
MB of data. Figure 35 is the result of the two stream simu-
lation. In Figure 35, x-axis means time and y-axis means the
ACKed sequence number at that time.

The throughput of stream 0 and 1 are as follows:

Stream 0 Stream 1
Throughput 146.92 Mbps 561.64 Mbps

Stream 1 sends more data than stream 0, but starvation
doesn’t occur. This means scheduler works correctly.

7 Related Works

Packet spacing has been well known method to stabilize In-
ternet traffic. The closely related ancestor of packet spacing
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is rate-based control of network traffic [1], but actual behav-
ior and effects of controlling intervals of packets has not been
investigated until recently [19]. In [19], authors shows pos-
itive effect of packet spacing to reduce packet loss of UDP
streams on actual Internet.

Application of packet-level rate control to TCP has been
studied for improving efficiency degradation due to bursty na-
ture of traffic caused by TCP congestion control mechanism.
[2] performed detailed simulation on LFN. However, their ob-
servations are not consistent with our observation described
in this paper. According to the result of [2], controlling packet
intervals mainly has negative effect to increase throughput.
But we have observed positive effect of packet spacing on
TCP traffic. This difference comes from the selection of net-
work parameters. Since we use real network circuit, the bot-
tleneck throughput is 10-20 times faster, and RTT is twice
longer and many routers exist between end nodes. Though
the interval of saw-tooth pattern of TCP window size is pro-
portional to available bandwidth and RTT, but we cannot see
saw-tooth pattern and the peak is decreasing as time elapses.
One reason of the difference could be that the ratio of routers’
buffer size against TCP window size is smaller than [2].

HighSpeed TCP (HSTCP) [13], Scalable TCP (STCP) [14]
and FAST TCP [15] try to change the window size more ag-
gressively than standard TCP. HSTCP modifies AIMD pa-
rameter to a function of current window size. STCP uses MI
(Multiplicative Increase) instead of AI. Both of them acceler-
ate the growth of window as the window grows.

While HSTCP and STCP use only packet loss as a conges-
tion signal, FAST TCP uses both packet loss and RTT vari-
ance, like TCP Vegas [12]. FAST TCP considers a queueing
delay causes RTT variance and decelerates the AI according
to the amount of queueing delay.

Other modifications [16, 17] try to make the convergece of
competing streams faster in addition to accelerating AI.

We focus on how we can reduce packet losses and how we
can makes occurences of packet loss fair among competing
streams. Then we adopt a packet spacing instead of modifi-
cation of congestion control algorithm.

On the other hand, some theoretical analyses [4, 5, 6, 7]
have been published recently. They arecompetitiveanalyses
in some limited environments, such as limited network topol-
ogy, limited model of loss probability and of router’s buffer,
and without propagation delay of congestion signal.

8 Concluding Remarks

We claim that window size control is not the only problem
of LFN to be solved. The difference of flow-level rate and
packet-level rate causes needless overload to intermediate
routers on the path and, will definitely cause more serious
problem when 10Gbps Ethernet is commonly used.

We show two software approaches of adjusting packet-
level rate to approximate flow-level rate; one is proceeded
in link layer, and the other is proceeded in transport layer.
Experiments on real LFN show that these approaches are ef-
fective, and combination of these approaches are also effec-
tive. As for future works, we want to check the combination
of our software approaches and HighSpeedTCP, FastTCP, and
ScalableTCP. Slow down at appropriate moment in Slow Start
Phase is our another target.

Finally, we believe that when 10Gbps era comes, NIC
which can recognize TCP-stream, in other words, co-
operation and information sharing between link layer and
transport layer, which is still under development and only
simulation result is shown in this paper, shall be very help-
ful.
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